
NASA-CR-203442

On the Dependence of Performance of Sultiprocessors

on Problem Size and Number of Processors

King Lee 1

Report RNR-90-010, July 1990 '

NAS Systems Division

NASA Ames Research Center, Mail Stop T-045-1

Moffett Field, CA 94035

July 10, 1990

IThe mailing address for Lee is Computer Science Dept., California State
University, Bakersfield, CA 93309. This work is supported through NASA
Contract NAS 2-12961

On the Dependence of Performance of

Multiprocessors on Problem Size and
Number of Processors

King Lee 1

NAS Systems Division

NASA Ames Research Center

Moffet Field, CA 94035

July 10, 1990

Abstract

The 'Amdahl's law ' effect on parallel processors seriously limits

the performance of computers when the number of processors increases

on problems of fixed size. These effects can be avoided if the problem

size increases sufficiently. A model is presented which can be used

to predict quantitatively how the problem size must increase in order

to maintain a given level efficiency as the number of processors in-

creases. This model may also be useful in comparing the performance

of r&dical]y di/_erent architectures.

Keywords: Parallel processing, performance modeling for parallel proces-

sors, parallel processor efilciency, relative performance of pars/]el processors.

XThe msiling sddress for Lee is Computer Science Dept., CaUfornis Stste University,
Bakersfield, CA 93309. This work is supported through NASA Contract HAS 2-12961,
while the &uthor was an employee of Computer Sciences Corporstiou

1 Introduction

As computer technology matures it seems evident that we are approaching

the limits of at which semiconductor devices can switch. In order to solve

problems that are still intractable with present day supercomputers computer

architects are turning to massive parallelism. However there is doubt as to

whether massive parallelism is s feasible solution.

In [1] Amdah] computed the speedup 11 of multiprocessor computers as

-I
1

where F is the fraction of the workload that is computed sequentially and p is

the number of processors. The maximum speedup (ignoring communication

and synchronization effects) occurs when F = 0 where the slope is -p(p- i).

This implies that it is very difficult to get close to maximal speedup with a

large number processors when there is any sequential workload. The above

expression and its consequences are known as Amdahl's law. When com-

munication and synchronization costs are considered, under certain general

conditions, there may be a limit to the number of processors that a problem

can profitably utilize (see [2], [3] [i0]). Using more processors would actually

slow down the computation. This "maximum speedup" effect takes place

even in the absence of sequential operations. Hack in [6] investigated in de-

tail the "maximal speedup" effect and the marginal effects on performance

of increasing processors.

Gustafson, Montry, and Benner in [5] reported speedups of the order

of 1000 for a multiprocessor with 1024 nodes in solving scientific problems.
These results seemed to be inconsistent with Amdahl's law and the "maxi-

mum speedup" effect. It wss pointed out that when problems were run with

a larse number of processors the problem size usually increased, often in

such a way as to keep the total running time constant. Gnstafson, Montry,

and Beuner proposed a model where the parallel workload was proportional

to the number of processors. Under this model they derived the following

expression for the scaled speedup:

R, = F+(I.F)p

which has a more moderate slope -p at F - O.

Van-Catledge[9] consideredseveralgeneral modelsof computations in
whichthe speedupwascomputedas a function of problem size. He considered

a workload M with a sequential fraction F' and a parallelizable fraction

1 - F'. When the problem size increases, his simplest model assumes that the

sequential workload remains FM and the parallelizable workload becomes

k(1 - F')M, where k is a measure of the increase in problem size. He derived

the following expression for the scaled speedup

F' + k(l - F')
a, =

F'+k(l-F')/p

This expression reduces to Amdahl's expression when k = 1 and to Gustafson,

Montry and Banner's when k = p. He also found that for large values of k

(_ 4096) that indeed one can get very high speedup even with large F'. In

this way he unites Amdah]'s and Gustafson's expression for speedup and re-

solves the apparent inconsistency of Gusta£son's results with Amdald's law.

Van-Catledge goes on to compare classes of computers using average hard-

ware parameters.

Flatt and Kennedy in [3] investigated the effects of synchronization and

communication on the performance and efficiency of parallel processors. They

derive bounds on the performance under various synchronization cost func-

tions, and they considered the effect of increasing the number of parallelizable

operations directly with the number of processors. They found that as prob-

lem size increases that one can get dose to linear speedup, but that the time

is likely to increase. Worley in [10] obtains similar results using by using

information theoretic methods. He found that for a large class of partial

differential equations, increasing problem size will increase the computation

time, and that the same _ents can be extended to other scientific prob-

lems as well. Patton in [8] gives a su;vey of work by several other authors

who have considered this problem.

It seems that the effects of sequential operations and communication and

synchronisation on speedup are real but in some cases avoidable by increasing

problem size. This paper focuses on how performance is related to problem

size and number of processors. Many of our results overlap those of the au-

thors cited above. The aim of this paper is to develop a quantitative model

that will allow us to determine how much the problem size must be increased

when we increase the number of processors in order to avoid the effects of

2

Amda_i's law. We shall alsoexaminehow chauging the hardware and soft-

ware parameters may influence the scaling requirements. A secondary goal

is to develop a framework for the comparing the performance of computers

with radically dif[erent architectures in a meanin_ul way.

In the next section we shall analyze a simple model and derive analytic

expressions for the performance, efSciency and cost as a function of the num-

bet of processors and problem size. It turns out the genera] case will have

the same qualitative behavior as the simple case. In the the third section we

use constant performance and constant efficiency curves to gain insight on

how problem size must be related to number of processors in order to avoid

the effects of Amda_l's law. The fourth section applies the-model to more

realistic cases.

We shall follow the model by Van-Catledge in [9] using the techniques

developed by Hockney and Jesshope in [7]. We assume that we have a com-

putation with S sequential operations and/t" parallelizable operations. We

shall assume that when the problem size varies, only /t" varies. This is a

reasonable assumption in cases when increasing the size of the computation

means increasing the limits of loops. We gather below for easy reference

a list of expressions that will be used; the precise meaning of each of the

expressions will be defined in the following sections.

P

K

$

C(p,K)

k_12

I"

'rs

'rc,

= number of processors used in the computation

= number of operations in the paralllzable part of the al-

gorithm.

= the sequential cost expressed in units of equivalent par-

allel operations

= the communication or synchronization cost expressed in

units of equivalent parallel operations.

= a measure of the how quickly one can achieve the peak

performance.

= (S+ e(p,K))p

-- average time to perform one parallel operation by a pro-

cessors.

-- average time to perform one sequential operation.

--- average time to perform one communication and sychro-

nization operation.

3

,.(p,_.,C,S, K) =

T(p,r,C,S,K) =

R .._

E =

maximum achievable performance (in MFLOPS) for

problem of size K

the maximum achievable performance (in MFLOPS)

with p processors

= p/r

performance of computer with p processors, average

time per operation r, C communication cost, S serial

operations, K parallel operations

time to complete computation with p processors, aver-

age time per operation r, C communication cost, S serial

operations, K parallel operations

speedup

T(1,r,O,S,K)

T(p, r, C, S, K)

Efficiency

T(1,r,O,S,K)

pT(p,r,C,S,K)

_,'(p,= r, C, S,K)
P

2 Simple Model with Constant Communica-

tion Cost

The time to perform one parallel operation may be considerably different

than time to perform one communication or even one sequential operation.

We interpret I- to be the average time to perform a parallel operation. Let

S' be the actual number of sequential operations ea_ taking 1"s time, sad C'

be the actual number of operations for communications and synchronization

each taking am average of I"c time. Then the total overhead time to_,,d is

to_ = rsS' + rcC'

.= ,(_s' + _c')
T T

= _(s+c).
S + C depend both on the number of sequential and communication oper-

ations and the ratios rs/r and rc/r. If we say that one actual sequential

4

operation is equivalent to two parallel operations if ts = 2r, then S + C

represent the number of sequential and communication operations in terms

of equivalent parallel operations.

In this section we shall assume that the time required for sending data

between processors, measured in equiwlent parallel operations, is constant

(C(p, K) = C). While this assumption is unrealistic, it will allow us to

derive analytic results which gives insight into the qualitative behavior of

mu]tiprocessor systems. We shall investigate more realistic cases later.

The time to perform a computation with p processors, average time to

complete an arithmetic operation 1-, $' sequential operations, C communica-

tion operations, and K paral]elizable operations is given by.

K
T(p,r,C,S,K) - r(S + C.4- --) (1)

P

(h/2 + K)

r_)

where h112 = (S+C)p, and r_) = p/r. We shall see that h112 is analoguous to

the synchronization parameter sl/_ discussed in [7]. Its interpretation is that

the time required to compute the hl/2 operations in parallel with p processors

is the same as the time to compute S + C operations sequentially.

Gustdson, Montry and Benner in [5] pointed out that when we increase

the number of processors we usually also increases the problem size, often

in such a way that total time remains constant. If we fix time to be To in

equation 1 and solve for K, we get

g = (Yo/r-(S+C))p (2)

and we see that for this model it is possible to keep time constant while

scaling linearly. Table 1 contains calculated values of T(p,r, C, S, K) for

various values d (p, K) when S = r = 1 and C = 0.

Performance is the number of operations divided by the time to perform

the computation, so

(S+ K)
r(p, r, C, S, K) =

T(p, r, S, C, K)

= p(S+K) (3)
r((C + 5)p + K)

5

K p

4 8 16 32 64 128 256 512 1024 2048

2048 513.0 257.0 129.0 65.0 33.0 17.0 9.0 5.0 3.0 2.0

1024 257.0 129.0 65.0 33.0 17.0 9.0 5.0 3.0 2.0 1.5

512 129.0 65.0 33.0 17.0 9.0 5.0 3.0 2.0 1.5 1.3

256 65.0 33.0 17.0 9.0 5.0 3.0 2.0 1.5 1.3 1.1

128 33.0 17.0 9.0 5.0 3.0 2.0 1.5 1.3 1.1 1.1
64 17.0 9.0 5.0 3.0 2.0 1.5 1.3 1.1 1.1 1.0

32 9.0 5.0 3.0 2.0 1.5 1.3 1.1 1.1 1.0 1.0

16 5.0 3.0 2.0 1.5 1.3 1.1 1.1 1.0 1.0 1.0

8 3.0 2.0 1.5 1.3 1.1 1.1 1.0 1.0 1.0 1.0

4 2.0 1.5 1.3 1.1 1.1 1.0 1.0 1.0 1.0 1.0

Table 1:

Time as function of K and p

,(s+c+
C=O S=1 r=l

Table 2 contains calculated values of

(p, K) when S = r = 1 and C = 0.

. S+K

rE" kxl= + K"

r(F,r,C,S,K) for vazious values of

If we fix a value of p and let K --+ oo, r(F, I", C, S, K) will approach

the asymptotic performance r_). Let / be the fraction of the asymptotic

performance r_) obtained st (p,K). If we solve/r_) = r(F,_',C,S,K) for K

using equ=tion (3) we get

/(s + c)p- s
K =

1-/

and a performance of one half r_)is achieved when / = 1/2 or

K = (S-.I-C)p-2S

= k112 - 2S.

(4)

6

K p

4 8 16 32 64 128 256 512 1024 2048

2048 4.0 8.0 15.9 31.5 62.1 120.5 227.7 409.8 683.0 1024.0

1024 4.0 7.9 15.8 31.1 60.3 113.9 205.0 341.7 512.5 683.3

512 4.0 7.9 15.5 30.2 57.0 102.6 171.0 256.5 342.0 410.4

256 4.0 7.8 15.1 28.6 51.4 85.7 128.5 171.3 205.6 228.4

128 3.9 7.6 14.3 25.8 43.0 64.5 86.0 103.2 114.7 121.4

64 3.8 7.2 13.0 21.7 32.5 43.3 52.0 57.8 61.2 63.0

32 3.7 6.6 11.0 16.5 22.0 26.4 29.3 31.1 32.0 32.5

16 3.4 5.7 8.5 11.3 13.6 15.1 16.0 16.5 16.7 16.9

8 3.0 4.5 6.0 7.2 8.0 8.5 8.7 8.9 8.9 9.0

4 2.5 3.3 4.0 4.4 4.7 4.8 4.9 5.0 5.0 5.0

Table 2:

Performance as a function of p Lud K

r(p, C, S,K)
C=0 5=1 _'=1

This value of kx/2 determines how rapidly one reaches the asymptotic perfor-

mance. In Table 2, C = 0 and S = 1 and for each p, one achieves half the

asymptotic performance for that p along the llne K - 19- 2.

If we hold K constant in equation (3) and let p --* co, we see that the

performance tends to

$+K

"_) - _(S+C) (5)

The reason that r(_g) does not increase without bound as p increases is that

even if both the time spent computing the pazallel operations go to zero,

the time spent computing the sequential and communication paxt remains

constant. If S + C _ 0 problems cannot be scaled up indefinitely by just

increasing p. Let f be the fraction of the asymptotic performance r(_g)

obtained at (p,K). If we solve fr(_ g) = r(p, I",C,S,K) for p using equation

7

K p

4 8 16 32 64 128 256 512 1024 2048

2048 99.9 99.7 99.3 98.5 97.0 94.2 88.9 80.0 66.7 50.0

1024 99.7 99.3 98.6 97.1 94.2 89.0 80.1 66.7 50.0 33.4

512 99.4 98.7 97.2 94.3 89.1 80.2 66.8 50.1 33.4 20.0

256 98.8 97.3 94.5 89.2 80.3 66.9 50.2 33.5 20.1 11.2

128 97.7 94.9 89.6 80.6 67.2 50.4 33.6 20.2 11.2 5.9

64 95.6 90.3 81.3 67.7 50.8 33.9 20.3 11.3 6.0 3.1

32 91.7 82.5 68.8 51.6 34.4 20.6 11.5 6.1 3.1 1.6

16 85.0 70.8 53.1 35.4 21.2 11.8 6.3 3.2 1.6 0.8

8 75.0 56.3 37.5 22.5 12.5 6.6 3.4 1.7 0.9 0.4

4 62.5 41.7 25.0 13.9 7.4 3.8 1.9 1.0 0.5 0.2

Table 3:

Efficiency as a function of p and K

100r(p, _', C, S, K)
P

C=O S=1 _'=1

(5) and (3) we get

fK
p =

(,5' + C)(1- y').

We acldeve half the asymptotic performuce r_) when f = 1/2 where we

have p = K/($ + C) and (S + C)p = k112 = K.

The pedonnance increases most rapidly in the direction of the gradient

(_,_) = (K(S-I-K) Sp(p-1)-I-Cp 2

The gradient has slope 1 along one arm of the hyperbola

K-t- (S.I-C) p 2(S-t-C - T (1 (S-t-C)

(6)

8

K

4 8

2048 1.0 1.0

1024 1.0 1.0

512 1.0 1.0

256 1.0 1.0

128 1.0 1.1

64 1.0 1.1

32 1.1 1.2

16 1.2 1.4

8 1.3 1.8

4 1.6 2.4

P

16 32 64 128 256 512 1024

1.0 1.0 1.0 1.1 1.1 1.2 1.5

1.0 1.0 1.1 1.1 1.2 1.5 2.0

1.0 1.1 1.1 1.2 1.5 2.0 3.0

t.1 1.1 1.2 1.5 2.0 3.0 5.0

1.1 1.2 1.5 2.0 3.0 5.0 8.9

1.2 1.5 2.0 3.0 4.9 8.9 16.7

1.5 1.9 2.9 4.8 8.7 16.5 32.0

1.9 2.8 4.7 8.5 16.0 31.1 61.2

2.7 4.4 8.0 15.1 29.3 57.8 114.7

4.0 7.2 13.6 26.4 52.0 103.2 205.6

Table 4:

Cost as a function of p and K

1

Efficiency

2048

2.0

3.0

5.0

9.0

16.9

32.5

63.0

121.4

228.4

410.4

which is asymptotic to the]Jne K = VFS + Cp. In the region in the (p, K)

plane above this hyperbola the gradient has slope < 1 and we increase per-

formance faster by increasing p than by increasing K. We shall refer to this

region as the region where parallel operations dominate. In Table 2 it cot-

responds to the points above K = p. In the region below the hyperbola the

gradient has slope > I sad we increase performance faster by increasing K

then by increasing p. We shall refer to this region as the region where se-

quentisl operations dominate. In Table 2 it corresponds to the points below

K=p.

The speedup R is

T(1,_',O,S,K)
R =

T(p, _', C, S,K)

= r(p, C, S, K)

and is just a multipleof the performance. We prefer to use performance

rather than speedupbecauseperformanceallows more meaningful compar-

isons between different computers such as the Cray YMP with 8 processors

and the Connection Machine with 64K processors.

For p > 1 the efficiency is given by

T(1,r,0, S, K)
E =

vT(p, _, C, S, K)
S+K

m

(s + C)p + K
(7)

E tends to 1 as K tends to infinity and E tends to 0 as p tends to infinity.

If we solve for K in terms of E and p in equation (7) we get

K = E(S+C)p-S
_-E. (S)

The set of points where E = const in the (p, K) plane are lines with slope

equal to (S + C)E/(1 - E). Table 3 computes the efficiency for S = _" = 1

and C = 0. The gradient of the efficiency is

a-pp'aK = (-(-S+ C)p+K)' '((S+C)p+K)']" (9)

It is evident from the quadratic term in the denominator of aE/ap that

efficiency drops off rapidly as p increases for large p.

Let B be the cost of a single processor (in dollars). Then the cost of the

computation in terms of dollars per MFLOPS for is given by

Cost -
Bp

r(p,'r, C, 5', K)
B_"

E

Thus the cost of performing the given computation is inversely proportional

to the efficiency (Table 4). The absolute value of the gradient of cost is

inversely proportional to the square of E, and increases very rapidly when

E is small. Another commonly used measurement of cost is MFLOPS per

dollar. This is simply the inverse of B, and is directly proportional to E.

10

3 Discussion of the Simple Model

In visualizing the MFLOPS surfaces defined by equation (3) it will be useful

to consider curves r(p,r,C,S,K) = const in the (p,K) plsae. Figure 1

shows the curves of constant performance for r - 8, r = 32, and r = 128

when r - 1, S = 1 and C - 0. Also shown is the line K = V_+ Cp (which

asymptotically divides the region where sequential operations dominates from

the region where parallel operations dominate), and the lines of constant

efficiency for E = .50, E - .90, and E - .95. Note that we are using a

log log scale for the axes. The constant performance curves form a family of

rotated hyperbolas whose vertices are asymptotic to the line K -v_ + Cp.

Figure 2 shows the is a similar curve when r - 1, S - 1 sad C = 2.

Increasing the overhead S + C corresponds either to increasing the number

of overhead operations involved or to increasing the ratios rs/r and/or ro/r.

The effect is to raise the curves, i.e. to increase kx/2.

Adding processors, which is equivalent to moving to the right on a hor-

izontal line in the (p,K) plane, will always speed up performance in this

simple model. Depending on the region in the (p, K) plane the improvement

in performance may be slow or rapid. When we are in the region where

parallel operations dominate increasing p

• increases performance significantly (Table 2),

• decreases time significantly (Table i),

• raises costs (in units of dollars per MFLOPS) moderately (Table 4).

In the region where sequential operations dominate increasing p

• increases performsace slowly,

• decreases time slowly,

• raises costs rapidly.

We can find the value of p,/hi2, at which the the efficiency is .5 by setting

E to .5 in equation (7) and solving for p. We find K

K+2S
p(g)

x/_ - S+C "

11

2048 K

1024 -

512 -

256 -

128 -

64 - .*

32 - " *

16 - •
D

Go

E = .54

I I

4 8

8 MFLOPS
32 MFLOPS
128 MFLOPS

A O

. o E = .95

. O

. o

* o

. O

. o

. o

o
a

* • 0 *

* * * * *

0 0 0 0 0

0 0 0 0 0

0

0 °_'" .9 oD

0 •

o a

0 •
0

o a

a o
Oo o

o o

a

I I

16 32

a 0 0
0

0
0 0 0 0 _ 0

* , , , . , , , , ,

I I

64 128

Figure 1:

i I i p

256 512 1024 2048

Constant Performsnce sad Constant

Efficiency Curves

C=0 S=I r=l

12

2048 K

1024 -

512 -

256 -

128 -

64 -

32 -

16 -

8 -

4 -

A

_r

8 MFLOPS
32 MFLOPS

128 MFLOPS

0

E = .95 o

0

0

0

D

00000

00000

*_ -- .9

0

E "_ *5*

0

*o
0

0

0

0 0

rl
0

¢)

0 0 0 0 0 0 0

,-i

t
D

"Jr
_r_r

I I I I

4 8 16 32

, i i i i p

64 128 256 512 1024 2048

Figure 2:

Constant Performance and Constsnt

Efficiency Curves

C,=2 S=I I"=i

13

After solving for p in equation (S), we have

_, _ K + 2S (S+ C)E
p $+C (1-E)K +$

l-E+ s

E

1-E

for large K. It follows that if we are computing with eflidency E at a point

(p,K) for large K and we increase the number of processors by a faA:tor much

greater E/(1 - E) we shail operate at less than .5 efficiency. This can *]so

be deduced from from Figure 1 where the lines of constant e_dency are

parallel to line E = .5. Thus if we have an efficiency of .80, we may increase

the number of processors by a factor of E/(1 - E) = 4 before the efficiency

drops to about .5. Further increases in p would increase performance slowly.

On the other hand, if we have an dBdency of .95 using p processors, and we

can increase the number of processors by a factor of E/(1 - E) = 19 before

the efficiency drops to .5. Thus efficiency gives information not only on the

utilisation of the processors, but also on the potentiad for speedup that can

be obtained by adding processors.

From equation (2) the slope of the constant time curves takes on all

values from 0 to co as the time To vanes from I"(S + C) to co. Similarly from

equation (8) the slope of the constant efBciency curves also take on all vaiues
from 0 to co as E varies from 0 to co. Therefore if we vary K linearly with

p with any slope, the corresponding curve will be asymptotic to a constant
time curve and a constant e/Bciency curve on a log log scale. Suppose that

we have a computation of size Ko with p0 processors. Let

To =

EO

+c + Ko)

(s+ Xo)
(S + O)_ + Ko

from equations (1) and (7). Suppose we wish to increase the problem size

and number of processors in such a way as to keep the time at To. Then from

14

equation (10)

To = _(s+c + C)
P

and solving for K we get

To_ (s + c))pK = (V
/t:o

"- --p°

If we substitute this line into to equation (7) we will find that along this line

the efficiency is :.

E
s+_p

(s+c)p+ _p

= (S-+Ko)I(S+C+Ko)

o , __! Ko= (_ _+-+_ /(s+c+-_)

= EO-(s+c)_+K °

Therefore scaling in such a way as to keep time constant decreases efficiency;

if S is small compared to C or Ko/po then the decrease in efficiency will be

8m_]].

If we wish to increase p and K in such a way as to maintain the same effi-

ciency, we see from equation (8) that we must stay on the constant efficiency

line with slope (S + C)E/(I - E). If we increase the number of processors

by Ap we must increase K by AK, where, from equation (8),

E

&K = I-E(5'+C')AP

If AK is less than this value efficiency drops. For example if E = .99, then

in order to maintain the same efficiency we must have AK = 99(5 + C)Ap.

On the other hand, if E = .8, then to maintain .8 efficiency we must have

15

AK = 4(S + C)Ap. If we substitute equation (8) into equation (1) we find

that the time on the constant efficiency curve to be

T = r(S+c+E(S+C) ES-)p)1-E (1-

so that time increases with increasing p.

What is important is not maintaining constant efficiency, but to avoiding

the region of low efficiency. The user may decide the minimal acceptable

efficiency; once that is determined the user is constrained to a region in the

(p, K) plane that is (asymptotically) bounded by a line. We shall see in the

next section that for more complex models this region may be bounded by a

curve.

Up to now we have let K, the number of parallelizable operations, repre-

sent problem size. This may not be the best representation of problem size

for two reasons. The first reason is that the end user may find another mea-

sure of problem size more natural than number of operations. If the problem

at hand involves square matrices, the user may find N, the dimension of the

matrices, or N 2, the size of the matrices, to be more convenient to work with.

If we can express the number of parallelizable operations as a function of N,

then we can let the vertical axis represent N or N 2.

The second reason is that the number of operations may not be appro-

priate when comparing performance on computers with radically different

architectures. When comparing different architectures , we sometimes find

that the algorithm which is suitable for one architecture may not be suitable

for another architecture. On some computers users even trade oil commu-

nication time for computation time by recomputing data rather than saving

it. In this case it seems appropriate to replace K by a parameter related to

the intrinsic problem size and not to the number of operations. For problems

involving square matrices, this parameter might be the dimensions of the

matrix N.

When comparing different parallel computers one should not consider only

peak performance, but performance as a function of both p and K. A natural

way of comparing performances is is to compare the constant performance

curves and and constant efficiency lines of the two computers. Where the

computers differ greatly in the number of processors, we can scale the p axis

to make the curves more comparable. For example, if one were to compare

the CM-2 Connection Machine with 64K processors with the iPSC/i860 with

16

128processors,onemight plot thep axis for the Connection machine in units

of Lp processors. One might choose L to be 32 because 32 processors share

one floating point chip, or one might choose L to be ratio of the cost (in

dollars) of a processor of the iPSC/i860 and the cost of a processor of the
CM-2.

In Figure 3 we show the constant performance curve for a computer that

istwice as slowly (r = 2) as the computer in Figure 1. We assume that the

(S + C) is the same for both figures so, if the number of actual overhead

operations remains the same, the time r$ and tc also doubles. Let us assume

this machine of Figure 3 costs h_if as much per processor and we can afford

twice as many processors. In Figure 4 we plot the (extended) data with the

p axis scaled by one half. Intuitively we expect that the computer with the

slower processors can achieve the same asymptotic performance r_) as the

computer with faster processors by using twice as many processors. Intuition

is correct as we can see by considering considering the vertical line p = 8 in

Figure 1 p = 16 in Figure 4. Note however that it takes a larger problem to

achieve half of asymptotic performance r_). This is expected from equation

(4) where we saw that the value of K which gave one half the asymptotic

performance r_) was proportional to p.

For a problem of a given size the faster machine has twice the asymptotic

performance r(_X) of the slower machine. This is evident by comparing the

horizontal asymptotes in Figures 1 and 4. It also follows from factor 1- in the

denominator of r(_X) in equation (5). The reason is that with a large number

processors the time is dominated by the sequential operations, and on the

sequential operations the computer with the faster processor will do better.

If we compare Figures 4 and 1 we see that doubling p and I- (while keeping

(Sq-C) constant) ud rescaling the p axis is similar to increasing C. We may

note that the lines of constant e_ciency in Figure 4 lies above those in

Figure 1. This also follows from equation (7). If we have a choice of cutting

in half r together with ts and tc or doubling the number of processors we

should opt for cutting in half the average time to perform an operation,

others things being equal. If we decrease I- without also decreasing _'s and

rc proportionately the effect would have been to increase r_) and also ki/2

and the result may be similar to using twice as many slow processors.

Recall that I" is the average time to complete one operation and not the

cycle time of s computer. I- includes the effect of special characteristics

of the computer system such as cache, compiler optimization, vectorization,

17

2048

1024

512

256

128

64

32

16

K

E = .95

"E "- .9

/i" = _p°

D e

8 MFLOPS
32 MFLOPS
128 MFLOPS

. O

. o

. o

_r O

* O

* O

o

. o

OOOO0

00000

o

0

0

0

0

9

a

o o
* • 0 0

O

_r
o

* .

n *k

.a

.a

@

0

o o
0

o o o 0

* * * "k * * . .

" E = .5

I I I I

4 8 16 32

I I

64 128

Fisaze 3:

i i i p

256 512 1024 2048

Constant Performance and Constant

Efficiency Curves

C=0 $=I r--2

18

2048

1024

512

256

K

128 -

64-

32 -

16-

8-

4

G

_t

E = .95

•

_r

• E=.9 *

/t"=

rt

D •

*k

8MFLOPS

32 MFLOPS o o o o o

128 MFLOPS o o o o o

O o

O o

O o
• o

o o .n

O •

o .o o

D

O •

O

o o

0 o
0

0 0

a 0
• 0 0

0 0 0 0 0 0 0

•E - .5

I I I

8 16 32

I t I I I I p

64 128 256 512 1024 2048 4096

Figure 4:

p axis rescaled

Constant Performance and Constant

Efficiency Curves

C=0 S=I r=2

19

memory bandwidth, and communication costs. The information contained in

the constant performance curves takes all these features into account and one

may be able to infer values of r from the vertical asymptotes of the figures

based on experimental measurements. One would expect that computers

with fast processors would outperform computers with a large number of

slow processors for small problems. The constant performance curves allows

one to determine the region where one computer outperforms the other. If

one recalls that the llnesof constant efficiency are also the lines of constant

cost, one may also deduce in which regions the cost of the computation is

less for one computer compared with another computer.

For any real computer we have finite memory and number of processors.

This means we cannot run programs over a certain size K_ and if we have

only p,._ processors our performance is limited to _r_-. We are constrained

to compute in the region bounded by the p axes, K axes, the line K -- K,,_

and the line p = p,n_. The greatest performance within this rectangle oc-

curs at (p,_, K,,_). If we wish to obtain a level M of performance, we

must be sure that a portion of the curve r(p, I", C, S, K) = M lies in that

rectangle. Recall the line K = V_ + Cp asymptotically separates the region

where sequential operations dominate from the region where parallel opera-

tions dominate. If this line goes through (or near) (p._, K,._) we say that

our computer is balanced for this algorithm. If this line intersects the line

K = K,a_ we shall say we are memory bound; if this line intersects p = p,._

we shalJ say we are processor bound. The el[ects of Amda_'s law become

evident if we are memory bound; in that case using all p,._ processors would

mean computing in the region where sequential operations dominate and we

cannot obtain easily additional speedup by adding processors. We make good

use of massive parallelism if we are processors bound; in that case it is pos-

sible for all p,,_ processors to be used (for sufficiently large problems) while

remaining in the region where parallel operations dominate. The limitation

of performance depends not only technology through p,,_, and K,,._ but also

on the algorithm through the value of S + C that appears in the slope of

the line K - v_ + Cp. If one must make tradeoffs between p,,_, and K,,w,

the best tradeoff will be the one such that (p,,_, K,_.) lies near the line

K - v_ + Cp. If we have a number of applications with widely wrying

values of S + C, then no one tradeoff will be optimal for all applications.

Currently VLSI technology is advancing rapidly and one might expect

that class of computers based on VLSI to increase performance most rapidly

20

providing there are no other bottlenecks. VLSI advances in memory tech-

nology should benefit all class of computers equally. VLSI should allow p,_

to increase more rapidly for massively parallel computers than for conven-

tional supercomputers. However one should not underestimate the growth

potential of conventional architectures in the near future. The dominant su-

percomputer today, the Crays, have traded high peak performance for short

vector startup time (small ni/2 in the terminology of [7]). As problems in-

crease in size peak performance becomes more important and vector startup

time becomes less important. It is feasible to increase peak performance for

the Crays (at the cost of increasing ni/2) by using multiple pipes in the

arithmetic functional units. Examples of computers which obtain high peak

performance with multiple pipes per CPU are the Fujitsu and NEC comput-

ers. Replicating pipes within a functional unit is a form of parallelism which

is limited by the ability to move data efficiently from memory to the pipes.

We shall see in the next section the parallelism in replicating processors in

a message passing architecture may be limited by the ability to efficiently

move data from one processor to another.

In summary, we have found that it is important to scale in such a way as

to avoid computing in the region of low efficiency. In order to increase p and

K in such way to keep time constant one would increase K linearly with p;

efficiency will drop, the amount of drop primarily depending on the sequential

component of the computation. In order to increase p and K in such a way to

keep efllciency constant one would again increase K linearly with p; scaling up

while keeping ef_ciency constant will increase the time. Increasing CPU and

overhead speed moves the constant performance curves down and to the left;

increasing overhead (S + C) tends to raise the constant performance curves.

Computers with a large number of slow relatively processors will generally

may have relatively large value of hi/2. Av_lable resources determine

and K,,_. If trsdeoJ[s have to be made, the values should be chosen so that

the computer is balanced.

21

4 Model with Communication as a Function

of p

In general the communication and synchronization costs C(p, K) will be a

function of K and p and

A"
T(p,r,C,S,K) = r(S + C(p,K) + --)

P

p (S+K)
r(p, r, C, S, K) = -,(C(p,K) + S)p+ K"

(10)

(11)

If C(p, K) --, oo as p ---, oo the performance approaches 0 asymptotically.

Therefore for fixed K, if r(p,r,C,S,K) >_ 0 and r(O,r,C,S,K) = 0 there

is a value of p, p(g,_), for which the performance is a maximum and we have

the "maximum speedup" eiTect. In general C(p, K) will also increase with

K but unless C(p, K) grows faster than linear with K, K will dominate the

denominator of equation (11). It is hard to imagine a real application where

this would be the case. It can be shown that if C(p,K) is O(K") for some

a > 1, that there is a maximum achievable performance. Even if C(p, K) is

O(K'/p s) for some a > I and _ > 0 equation (7) shows that for fixed p, the

efficiency will tend to zero as K ---, oo, maldng it very hard to achieve high

performance and high efficiency on realistic problems. We shall assume that

C(p, K) grows at most linearly with K in the remainder of this paper.

Let us consider first one case in detail. We choose the algorithm for

multiplying two N by N matrices on a message passing hypercube type

computer as described in [4]. The time it takes to perform the computation

was derived to be

T
It"

= _(C(p,K) + --)
P

N _ 2N s"

= _(Co_-p(v_- 2) +c1_ + %-)

where Co is a constant proportional to the time to start sending a message

and CI is a constant proportional to the transmission time. We have assumed

that S, the sequential operations, are negligible compared to K and C(p, K),

22

and that K = 2N s. It follows from equation (3) that

r(p, C, 0,N) =
2N e

iv2 2N_2)+ + ,.
p 2N s

Covv (v - 2)+ C1N2v + 2NS

Figure 5 gives a plot the constant performance and constant effciency

curves. For fixed N the performance goes to 0 as p --.oo. and therefore

there is a is a "maximum speedup" effect.Imagine that one moves right

on a horizontalline,say along the lineK = 32. Performance increasesas

we cross constant performance curves with increasingvalues untilwe touch

one constant performance curve tangentiallyat p - f. In this case K -

32 touches the constant performance curve at about 128 MFLOPS. As we

continue to move rightwe shallrecrossconstant performance curves but now

with decreasing values. For p > f the curve has positiveslope of about

.3. This means that ifwe scalea problem in such a way that itscurve on

the (p, K) plane is a line with slope less than .3 there will be a maximum

achievable performance because there will be some constant performance

curves that it will never intersect. If we scale the with slope greater than

.3 then we shall cross every constant performance curve and we can achieve

any performance we wish provided p and K are sufficiently large.

If we fix p and increase N the performance approaches r_) as N _ oo.

The steepness of the vertical asymptotes of Figure 5 compared to those of

Figure I is due to the scaling of the vertical axis. Recall that K - 2N 3 so

that N - 4 corresponds to K = 128.

The constant efficiency curves for this figure have slopes a < I. Let us

approximate a by .5 (actually a value of .67 would be more accurate, but we

use .5 for purposes of illustration). These curves are asymptotic to curves of

the form N = Ap "s for some A. This means that if we increase the number

of processors by 4, we need to increase N by 2 in order to keep the same

efficiency. Stated another way, if we increase problem size (as measured

by N) linearly with p we increase efficiency. If we scale the vertical axis

in terms of N 2, a measure of the memory requirements, constant effciency

curves have the form N 2 -- A*p. This means that if increase problem size

(measured in terms of memory requirements) linearly with p we maintain

23

2048

1024

512

256

128

64

32

16

4

N
A

Z °-_ .95 .

ee "A"

E = .9

I

4

8 MFLOPS

32 MFLOPS

128 MFLOPS

O

OOOOO

OOOOO

0

O O

O O

O O

E = .5

I

8

e•

I

16

O

O

O

O

O

O

O ee

O

.O.

O

%

$

t

eo

O

O

O

O e •

Oe ee

O °

SO

0 e e

0

,e o o

0
• 0 0

¢o

O
O

I I I I I

32 64 128 256 512

Figure 5:

- •

o*

e •

e •

OO
O

O

O
0

0

n p

1024 2048

Matrix Multiplicstion

Constant Performance and Constant

EtRciency Curves

S=0 ';'=1

24

the same efficiency. Finally, if we scale the vertical axis in terms of K, the

number of operations, we have K = A'p 1"5 so that if we increase problem size

(in terms of number of operations) linearly with p, we decrease efficiency. The

slope of the constant efficiency lines is of critical importance in determining

how problems will scale. The slope depends in part on the choice of vertical

scale, and there may be several equally valid choices.

Let us next consider a more general case. Different functions for C(p, K)

in equation (10) will lead to different constant efficiency curves, and therefore

different scaling effects. Let us consider the case where C(p, K) - O(p a) for

some a > 0. If we replace C by Cpp" in equation (8) then the constant

efficiency curves have the form

K _ 1-E_.p 1+a

for large p. It follows that if we increase K linearly with p we fall below

that curve and efficiency will decrease. If we substitute the above expression

of K into equation (10) using C(p, K) = Cpp" the time along the constant

efficiency curve is

E(S +C) o,
T _. r(s+cp'+ _=TE p j"

Therefore along constant efficiency curves time increases like pa.

Suppose we wish to increase p and K in such a way that the time to

perform the computation remains constant at To. Using equation (1) and

again letting C(p, K) = Cpp" for some a > 0 we have for the constant time

curve

K0
To = ,(S + C,pt + _-)

If we solve equation (I0) for K and set T to To we find that

K = (_ - (s + c,p°))p. (12)

K becomes 0 when p is so large that the time to perform the overhead

sequential and communication operations equals the time to perform the

original smaller computation. This means that if the overhead grows with

25

the sizeof the problem,wecannotscale indefinitely in such a way as to keep

the time constant. Along the constant time curve, the efficiency can be found

by substituting equation i12) into equation (7) and we have

E _..

s + - is + c,p°))p
is + + - is +

which becomes 0 for s_iciently large p, as we would expect. Therefore if the

overhead grows with increasing p, we must increase the time as we scale the

problem up.

Suppose that C(p, K) is O(p") for some a > 0, and we wish to use some

measure of problem size N instead of K. Supoose we have K = O(N _) for

some _ > 1. In the example of matrix multiplication discussed above, we

had a = I and _ = 3. It can be shown that the constant efficiency curves of

equation (8) becomes of the form

N

for some A and large p. We shall say that if _, is "large" the problem is

communication intensive with respect to N; if _ is "large" the problem is

computation intensive with respect to N. If il + a)/_ _< 1 then we shall say

the computation scales well with respect to N. a and _ are properties of the

algorithm and and the algorithm therefore determines whether a problem will

scale well. Cip , K) is determined by the algorithm and in turn the choice

of algorithm is influenced by the underlying physical architecture. If the

problem scales well with respect to N, then we can obtain high efficiency we

we increase N directly with p. The time, however, depends on K and may

increase faster than linear if the problem is computationally intensive with

respect N.

In summary, how fast CiF , K) grows with increasing p and the units used

to measure of program size determines the asymptotic slope of the constant

efficiency curves ion a log log scale). If Cip, K) grows with p then we will

not be able to increase p and K indefinitely while keeping time constant.

The slope of the constant efficiency curves determines how the problems will

scale. Small values of the slope will mean that if we increase problem size

linearly with processors we tend to increase efficiency and and large values

mean that we will tend to decrease efficiency.

26

5 Summary

In order to be able to determine how problem size must increase with the

number of processors we express performance and efficiency as a function of

problem size and number of processors. We found that in regions low effi-

ciency adding processors will not significantly increase performance. There-

fore we must scale up the problem in such a way as to avoid this region.

For the simple case when the communication cost is constant, this region is

bounded by a straight line. For the general case the region of low efficiency is

bounded by a curve, say E - .5 which in many cases may be asymptotic to

line on when plotted on a log log scale. A "steep" constant efficiency curve

(one which has slope > 1 on a log log scale) means that problem size must

increase faster than the number of processors to maintain the same efficiency

and that the algorithm will not scale well.

The hardware and software characteristics will determine the average time

to perform an operation, and therefore peak performance r_). Decreasing _"

together with 1"s and I"c will change move the constant performance curves

down and to the left (compare Figure 3 and Figure I) The parameter kl/2 de-

termine the rate at which we reach the asymptotic performance r_) and r_)

(compare Figure 2 and Figure 1). kl/_ is determined by the relative speed

and number of sequential and communication operations. The rate of growth

of C(p, K) with p and K determine the slope of the constant efficiency curves

which in turn determine how the problem will scale. C(p, K) is a character-

istic of the algorithm, sad the architecture influences the choice of algorithm.

There may be a more meaningful measure, N, of problem size than K and

if the problem is expressed in terms of N, the scaling characteristics may

change.

We have also indicated how these constant performance curves can be

used to compare different architectures as disparate as the Cray and Con-

nection machine by rescsling the p axis.

This model does not directly address the question of whether massive

parallelism is feasible. It provides a framework for evaluating how particular

algorithms will scale. If for many algorithms of interest C(p, K) grows rapidly

with p or K, massive parallelism may not be feasible unless the communi-

cation can be overlapped with computation. If C(p, K) grows sufficiently

slowly with p or K, or if the coefficients in C(p, K) are be sufficiently small,

the asymptotic behavior may not be evident when we scale the problem. We

27

may considerthe case where C(p, K) is O(p a) to be a perturbation of of the

case where C(p, K) is constant, and if the perturbation is sufficiently small

we may achieve our desired performance without running into the effects of

Amdah]'s law. This is especially true if C(p, K) is O(log(p). What is needed

is experimental data for a large number of algorithms on present machines.

We can estimate how the algorithms will scale by extrapolating the line (or

curve) that goes through the "vertices" of the constant performance curves

and these estimations may shed light on the whether massive parallelism is
feasible.

Acknowledgment I wish to thank Eric Barszsz and Horst Simon for cor-

recting several errors and suggesting improvements in substance and presen-

tation.

References

[11

[2]

[3]

[4]

[5]

[6]

[7]

Amdald, Gene M., Validity of the _ngle-processor approach to achieving

large scale computing capabilities, AFIPS conf. proc., 30(1967), 483-485.

Amdahl, Gene M. , Limits of Ez'pectation, International Journal of Su-

percomputing Applications, 2(2) (1988), 88-94.

Flatt, Horace and Kennedy, Ken, Performance of parallel processors,

Parallel Computing 12(1989), 1-20.

Fox, G. C. and Otto, S.W., Matriz algorithms on a hypercube I: Matriz

Multiplication, Parallel Computing 4 (1987) 17-31.

Gustafson, John L, Montry, Gary R. and Benner, Robert E., Develop-

ment of Parallel Methods for a lOY2_-Processor Hypercube, Siam J. Sci.

Star. Comput., 0(4) (July 1988), 609-638.

Hack, James J. On the promise of general-purpose parallel computing,

Parallel Computing, 10(1989), 261-275.

Hockney, R. W. and Jessope, C. R., Parallel Computers _, , Adam

Hilger, 1988.

28

[8] Patton, PeterC., Performance Limits/or Parallel Processors, in "PLral-

lel Subercomputing: Methods, Algorithms, and Applications", Graham,

Cttrey ed, John Wiley and Sons, 1989

[9] Van-Catledge, Frederic A., Toward a General Model for Evaluating the

Relative Performance o/Computer Systems, The International Journal

of Supercomputer Applications, 3(2) (1989), 100-107.

[10] Worley, Patrick H., Limits on Parallelism in the Numerical Solu-

tion o� Linear PDES, Oak Ridge National Labatory, Technical Report

ONRL/TM-10945 (1988).

29

